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Motivation

• HPC systems will require online auto-tuning

– Managing billion-way parallelism is non-trivial

• Cannot myopically focus on wall-time

– 20MW power goal represents additional hurdle

• Need an auto-tuner that is:

– Coordinated (Managed by the runtime OS)

– Online (Optimization occurs without training runs)

– Multi-objective (Handle power as well as wall-time)
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Dealing with Multiple Objectives

• Multi-objective problems have a set of solutions

– Each solution in set is equivalent

• Optimal solution is subjective

– Tuner cannot choose for the user

• Online tuning even harder

– Cannot pause for user input

– Must limit overhead of testing

– Use as few evaluations as possible
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ANGEL Inputs

• Two values per objective collected from user apriori

– Priority Rank

• Orders each objective from highest to lowest

• Each rank must be unique

– Leeway Percentage

• Amount ANGEL may stray from this objective’s best

• Used to find improvements in other objectives
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ANGEL Algorithm

• Begin with highest priority objective

– Use single-objective algorithm for this objective alone

– Record all value ranges (min, max) during sub-search

– Repeat with next highest objective until all are searched

• Penalize sub-searches to maintain leeway preference

– Applied when higher priority objective exceeds leeway

– Allows upper level sub-searches to guide lower levels

• Result of final sub-search is the overall solution
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ANGEL Penalty Function

• One-dimensional example with two objectives
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Numerical Testsuite Experiments

• Tests from multi-objective optimization literature

– Designed to be difficult, but not pathological

• Compared against ParEGO

– Represents best evolutionary algorithm for our case

– Strives to use very few function evaluations

– Geared towards (relatively) low-dimensional objectives

• Compared against random

– Must ensure our algorithm does something intelligent
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Testsuite Results – Quality

• Quality is a measure of the converged solution.

– Distance from the best solution discovered by hand.

• ANGEL wins on two-thirds of testsuite.
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Testsuite Results – Efficiency

• Efficiency is a measure of search overhead.

– Critically important to keep low for online auto-tuning.

• ANGEL wins on all but one test.
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LULESH Experiments

• Lawrence Livermore’s LULESH proxy application

– Unstructured hex mesh problem

• Tuning two input variables:

– OpenACC loop vector length

– GPU clock frequency

• Two objectives:

– Minimize running time

– Minimize energy consumption
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LULESH Objective Landscapes
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Changing the Threshold

• ANGEL behaves properly for changing leeways

– Energy usage declines along with leeway

– Shows proper behavior for real HPC data
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Conclusion and Future Work

• ANGEL is a step towards runtime system auto-tuning

– Uses an iterative and hierarchical approach

– Controlled by simple user inputs provided aprioi

– Performs well on numerical testsuite

– Shown to work correctly on real HPC data

• Future work

– Power (rather than energy) studies

– Alternate underlying single-objective algorithms

– Explore avenues for parallelism
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